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Some anisotropic non-static perfect fluid cosmological 
models in general relativity 
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Department of Mathematics, Banaras Hindu University, Varanasi 221005, India 
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Abstract. In this paper we have derived perfect fluid cosmological models which are 
anisotropic, non-static and have homogeneous distributions of density and pressure. 
Various physical properties of the models have been explored. 

1. Introduction 

Non-static universes play an important role in the understanding of phenomena of 
cosmological and astrophysical significance. Homogeneous and isotropic cosmological 
models have been extensively studied by several authors. Non-static anisotropic 
universes have attracted the attention of many authors and both homogeneous and 
inhomogeneous models have been constructed. Heckmann and Schucking (1962) have 
derived general models representing incoherent matter. Further work in this line has 
been done by Singh and Singh (1968), Jacobs (1968), Ellis and MacCallum (1969), 
Singh and Abdussattar (1973) and Roy and Singh (1976) to name but a few. 

In this paper we have considered perfect fluid cosmological models which are 
non-static and have cylindrical symmetry. Additional assumptions regarding the 
behaviour of the transverse scale factors lead to homogeneous universes. Some exact 
solutions have been obtained and their physical features have been examined. 

We consider the metric in the form 

d s 2 = - d t 2 + A 2 d x 2 + B 2 d y 2 + C 2 d z 2  (1)  

where A, B and C are functions of x and t alone. The field equations 

-8rGT: = RI -iRS: + 118; 
with 

Ti = ( E  +p)u,v'+p6: 

for the metric (1) reduce to 

8 4 4  C44 B4C4 1 BiCi+A=8TGp +- - 
B C BC A2 BC 

+.I = 8rGp A44 C44 A4C4 +- 
A C A C A  "(2' AC 

+ A  = 8 ~ G p  A44 8 4 4  A4B4 +-- 2-- 
A B AB i2 (5  AB 

(4) 
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Bid Ci4 +- A4 (-+-) Bi CI = 0 
B C A B C  

the coordinates being assumed to be comoving. The suffixes 1 and 4 after the symbols 
A, B and C indicate differentiations with respect to x and t respectively. Equations 
(4148) lead to 

where p = BC and U = B/C. We shall consider two cases: I, v1 = 0, and 11, 1 - 4 ~  = 0, 
v1 f 0. 

2. Case I: VI = 0 

In case I there are two possibilities, namely, p 1  = 0 and 1-41 # 0. In the first case equation 
(9) is identically satisfied. Equation (10) then shows that k is of the form of the product 
of a function of x and a function of t. By an obvious transformation the metric reduces 
to that of Bianchi type I. This metric has been widely discussed in cosmological context. 
In the second case when p1 # 0 from equation (9) we obtain 

(12)  AP (v4/ U )  = F(x 1. 

p-1 '2(p i /A)  = Q ( x ) .  (13) 

From equation (10) we also obtain 

From equations (12)  and (13) we obtain 

p = ( a ( x ) ( v / v 4 ) +  Y ( t ) ) 2 ' 3  (14) 

where a l  = $Fa. Substitution in (1 1) leads to 

where K is a constant. The metric (1) therefore reduces to the form 

d s 2 = - R 6 d T 2 + R 2 d x 2 + R 2 e - 2 x ( e " T  dy2+e-"" dz2)  (15) 

by a suitable transformation of coordinates. The metric (15) corresponds to the 
orthogonal Bianchi type V. Bianchi type V universes are a generalisation of FRW 

universes with constant negative curvature since the three surfaces T = constant are of 
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constant negative curvature. These belong to class B with 7: = 0 in the notation of Ellis 
and MacCallum (1969). Bianchi type V universes have been extensively studied by 
various authors. Grishchuk et al (1969) have considered a perfect fluid with V ’  # 0. 
The case with V‘ # 0, V 3  # 0 was considered by Ruzmaikina and Ruzmaikin (1969). 
Matzner (1969) considered a model which includes viscosity. Shikin (1975) obtained 
solutions with dust and radiation. Models with multifluid components were studied by 
Hughston and Shepley (1970). Questions relating to asymptotic behaviour and 
singularities have been discussed by MacCallum (1971) and Collins and Ellis (1979). 
Collins has also studied Bianchi type V models as plane autonomous systems (Collins 
1971). 

The equation T:;u’ = 0 in the case of a perfect fluid leads for the metric (15) to 

3 ( ~  + p ) R / R  + d = 0 (16) 

where a dot denotes differentiation with respect to T = R 3  dT. If the equation of state 
is p = P ( E )  then we get on integration 

(17) R 3  = p ef(‘’ 

where p is a constant and 

For the metric (15) we have 

R 2 / R 2 = f ( 8 n G ~  + m 2 / 4 R 6 + 3 / R 2 + A )  

so that 

where T~ is a constant of integration. Equations (17) and (19) give the parametric form 
for the model. In the case of the barotropic equation of state p = ( y  - 1 ) ~  where 
1 s y = constant s 2 we have 

E = EOR”/R” (20)  

where E,, and R o  are the present values of density and radius of the universe. Equation 
(1 8) then leads to 

R’ m 2  1 A 8nGEOR;’ _-  +2+-+- - 
R 2 - 1 2 R 6  R 3 3 R3’ 

For A < 0, R vanishes for only one real value of R and R < 0 at that instant. Hence in 
this case the model expands from an initial singularity, and after reaching a maximum it 
recontracts to a second singularity (cf MacCallum 1971). When A 3 0, R > 0 so that it is 
an ever expanding model. A simple calculation tells us that when A>O the rate of 
expansion R which is infinite at the beginning attains a minimum at R = R I  given by 

and thereafter it is speeded up. MacCallum has given a qualitative discussion of the 
horizon structure of the homogeneous models. For the present model we can verify the 
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Taking 40 = 1, HO = 75 km s-l Mpc-' and E O  = 3.1 x low3' g we find that 

vi 1 8 6 7 ~ 1 0 - ~ ~ + A  
0; - 11250 x * 

_ -  

For A = 0 we get v 0 = 0 . 4 0 0 .  This is not in accord with observation (Ellis 1971). If we 
set the limit for c0 as v O < & o  we find that 

-1.867 x < A < -1.164 x 

The universe in this case will obviously have expansion from an initial singularity for a 
finite period of time followed by contraction to another singularity. 

We can completely integrate the equation (21) for y = 2 and A = 0. The resulting 
metric can be transformed to 

(30) 
-m/4a  7-1  

7 + 1  
dX2+e-2X - [ ( :) m/4a d Y 2  + ( -) 

with 

8 TGE OR E 
8TGe = 8 ~ G p  = > O  a 3  

where 

a =V'&~~+!TGEOR;. 

The model has a singularity at 7 = 1. It is a poir singularity if m2 C ~ ~ T G E ~ R E .  The 
singularity is of the cigar type or the barrel type according to whether m2 s 1 6 ~ G e ~ R ; .  
The model starts expanding from its singular state and continues to expand till T = 00, at 
which stage the space-time becomes flat. 

The metric (15 )  is in general of Petrov type I. For type D we must have 

so that 

R 2  = $m cosech{m(M - T)} ( 3 3 )  

where M is a constant. By suitable transformation of coordinates the metric (15) 
reduces to 

dXZ+e-2X [ ( 7 - 1 ) ' 1 2  - d Y 2 +  ( ~ - l ) - " ~ ~ ~ ~ ] ]  - - m dT2 (34 )  

7 + 1  7 + 1  8 J T - l '  
The pressure and density for (34 )  are given by 

81rGp = 4 / m ( ~ ~  - 1)3/2 + A (35 )  

~ T G E  = ~ / ~ ( T ~ - I ) ~ ' ~ - A .  (36 )  
For A = 0 this is a special case of (30 )  with a = $m. The singularity in this case is of barrel 
type. The model (15 )  will be of Petrov type I1 if 

R 2  = 1 / 2 ( b  + T) m Z O  (37 )  
b being a constant. However, the reality conditions E s p ,  p s 0 are not satisfied. 
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We get another exact solution by assuming 

U / @  = K =constant. 

The corresponding metric has the form 
2 / 3  2 K  

ds 2 =-dr  + ( d + - 7  & ) [ d X 2 + e - 2 x ( d + $ r )  d Y 2  

-21: 

+ e - 2 x (  d +$ r )  dZ2]  (39)  

by suitable transformations of coordinates, d being a constant. The pressure and 
density are given by 

m 2 ( 1 - 3 K 2 )  1 
12K2(d +mr/2K)''(d + m ~ / 2 K ) " ~ + ~  

8rGp = 

m 2 ( l  -3K' )  3 
12K2(d + mr/2K) ' - (d  + m ~ / 2 K ) ~ ' ~ - ~ '  

8.rrGE = 

Reality conditions E L p and p L 0 lead to 

K ' < $  A <  - 4 ~ J s / m  J1- 3 K i  

a. s (d  + mr/2K)'13 s -;A 

a. being the positive root of the cubic equation 

"(1 - 3 K 2 )  
12K2 

a 3 + a  + A =  0. 

The model is singular when r = -2Kd/m. By virtue of the reality condition this is a 
point singularity. The model satisfies the strong condition Jr vaaP dt  =finite, so that i t  
approximately becomes a Robertson-Walker metric (MacCallum 1971). Since the 
fluid flow is geodetic the geodesic deviation vector determines the relative flow pattern 
of the fluid. This vector 7' satisfies the equation 

For the metric (15) it reduces to the set 

ij" + 27j"($@ + a,,,) + $U(,)@ = 0 a = l , 2 , 3  

7j4  + q4@ = P/R (44)  

where a,1) ,  ( T , ~ ) ,  at3) are the eigenvalues of the shear tensor and 0 is a constant. Since 
g(ll is zero we find that the effect of the shear is in the transverse components of 77'. On 
integration 17' and v4  are given by 

If we assume that q'V, = 0 then P = b = 0. For the case U/@ = K, we have 

7' = E(d  + m ~ / 2 K ) ' / ~  + F (46)  
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(d + m~/2K)’ /~[P(d  + m ~ / 2 K ) ~ ~ / ~ +  Q(d + m~/2K)-  

1753 

1 K < h  -/6 

q 2  = (d + ~ T / ~ K ) ’ / ~ [ P +  Q log(d + m~/2K)]  
(d  + ~ T / ~ K ) ’ / ~ P  sin{;= log(d + m ~ / 2 K )  + 8) 

K=’ 24 

K > A  
(47) 

[L(d + m T / 2 K ) [ K ( 2 K + 1 ) / ( 3 1 < + 1 ) 1 1 ’ 2  q 3  = (d +mT/2K)(6K+1)/(18K+6) 

1 (48) + M(d + m 7 / 2 ~ )  - [ K ( 2 K  + 1 ) / ( 3 K +  1)1”* 

I 
where E, F, P, Q, L, M and 0 are constants. Each component of q i  tends to a finite limit 
as one approaches the singularity. Moreover, the magnitude of the vector q ’  also tends 
to zero. 

3. Case 11: PI = 0, VI f 0 

In this case equation (9) leads to v4 = 0. From equation (10) we get 

Equation (1 1) then leads to 

The metric (1) in this case reduces to the form 

d s 2 = - d t 2 + 4 2 d X 2 + p ( e X  d Y 2 + e - X  dZ2)  (51) 

after suitable transformation of coordinates, d, and p being functions of f alone. The 
functions 4 and p are related by the equation 

This metric belongs to Bianchi type VIo. The non-vanishing components of the Weyl 
tensor are 

~ 1 2 1 2  = ex(  - ih - i h ~ ( 4 ~ ) 4 4  + h 2 p 4 4  - 42p:/12p + &4*)4p4 + ipd: 1 (53a) 

~ 1 3 1 3  = e-X i - Ap -hp ( 4 2 ) 4 4  + A 4 2 ~ 4 4  - d 2 d /  12p + A(4 2)4p4 + tp4: (5361 

c 2 3 2 3 =  B(cL2/d,2+cL:-pucL44-cLpuq44/4 +2p2444/d,) (53c) 

c 2 1 2 4  = eX(-p4/p  + ~ 4 4 / 2 4 )  (534  

~ 3 1 3 4  = e-Xip4/p -p44/2d,). i 5 3 e )  

The metric is in general of Petrov type I and does not have algebraically special 
subcases. However if C1212 = C1313 = c 2 3 2 3  = 0 then the free gravitational field is of the 
magnetic type. In this case 

2cL444- 4p44 + 4 (p:/cL 1- 44p4 + p/&  = 0. (54) 
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Equations (52) and (54) lead to the following solutions 
2 4 = exp[ - i(4: - 2) - (+d4Jd4 -2 +sinh- 'Jb:  - 1 + a ) ]  

~ = e x p ( b - 4 ~ J 4 : - 2 - 4 : )  ( a  1 
4 = exp[ - i(4: - 2) + (&75,JZFT+ sinh-* Jb: - 1 +a)]  

(b) 

a, b and k being constants. After suitable transformations we get the metric cor- 
responding to cases ( a )  and (6) 

ds2 = exp[-( T 2  - 2) - ( T m +  2 sinh-'d;T2 - 1) + b] 

7 2  CL = k (44 + J44 -2) 

4dT2 
x d X 2 -  ( ( (T2-2) -  T J T 2 - 2 I 2  

+ e x p ( - T m -  T2)(eX d Y 2 + e e X  d Z 2 )  ( 5 5 )  

and 

ds2 = exp[-(T2 - 2) + (TJT  - 2 + 2  sinh-' d:T2- 1) + b] 2 

4 d T 2  
x d X 2 -  ( ( ( T 2 - 2 ) + T m ) 2  

+(T+J?-%)2(eX d Y 2 + e - X  dZ2) .  ( 5 6 )  

The pressure and density for the metric are given below. For metric ( 5 5 )  

8nGp = -$ exp[(T2 - 2 )  + (T-+ 2 sinh-' m) - b]( T2 + T a - ; )  + A 
(57) 

( 5 8 )  

~ T G E  = I -  exp[( T2 - 2) + (TJT 2 - 2 + 2 sinh-I m) - b]( T 2 +  TJT 2 1  - 2 -2) - A  

87rGp = --: exp[( T2- 2) - (TJT z -2  + 2 sinh-' JfT2- 1)- b]( T 2  -fTJT2 - 2 -;) c A 

~ T G E  = 5 exp[(T2-2) -(TJT 2 - 2 + 2  sinh-' J4T2- 1)- b](T2 + TJT2 - 2  -;)-A. 

and for the metric (56) 

(59) 

(60) 
The reality conditions for the first model require that 

3 exp[(T2-2)+(TJT2-2+2sinh-l  J i T 2 - 1 ) - b ] ( T 2 + T m - $ ) < 2 A  

< 3 exp[( T2 - 2) + (T=+ 2 sinh-' m) - b] 

x (r2+ TJ=- 1). (61) 

Similarly for the second model we must have 

3 exp[(T2 - 2) - (TdT2- 2 + 2 sinh-I J4T2- 1) - b](T2 + ; T m -  1) > 2A 

> 3 e x p [ ( T 2 - 2 ) - ( T m + 2  sinh-I J!;T2-1)-b] 

x(T~-$TJFZ-$). (62) 
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4. Conclusion 

Starting with a general cylindrically symmetric metric for which the time lines are 
geodesics, we find that when the transverse scale factors at each point have a ratio 
independent of the spatial coordinate, the metric admits an additional Killing vector 
and the space-time becomes homogeneous. Similarly when they are inversely propor- 
tional, the factor of proportionality being a function of t alone, the space-time becomes 
homogeneous. In the case of a Bianchi type V universe the anisotropy is in the 
transverse directions and it becomes increasingly large as one approaches the 
singularity. The behaviour of the anisotropy is also clear from the nature of the 
geodesic deviation vector which shows that the anisotropy plays a role only in the 
transverse components while the axial component is independent of it. The magnitude 
of this vector tends to zero as one approaches the singularity. 
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